Recent USGS study on groundwater
May 20, 2013

By Collin Gannon (UNM SOL, 2015)

The USGS report on the rapid drawdown of groundwater is a 2013 Scientific Investigations Report (2013-5079) published by Leonard F. Konikow, in conjunction with the USGS and the USDOI, entitled Groundwater Depletion in the United States (1900-2008). (Citation from USGS website- Konikow, L.F., 2013, Groundwater depletion in the United States (1900–2008): U.S. Geological Survey Scientific Investigations Report 2013–5079, 63 p., http://pubs.usgs.gov/sir/2013/5079). The study seeks to determine the overall rate and magnitude of groundwater depletion across the United States, and results in a comprehensive data set that was previously not well characterized. (Konikow at 1) Geologists applied a variety of different study methods to any given aquifer system, consisting interchangeably of water level change and storativity data, gravity changes, flow modeling, confining unit analysis, water budget data, pumpage data, extrapolation, and subsidence. (Id. at 3) Thus where historical data was not readily available geologists modeled groundwater depletion for an aquifer in light of known rates of recharge, variable depletion of an aquifer during times of stress, etc. In light of all the complex factors affecting the "amount of groundwater in storage", this study did not attempt to calculate seasonal variations or short-term fluctuations. (Id.) The data discussed in this report is simply a dataset of the cumulative reduction of groundwater in storage for various aquifers across the U.S. from 1900 to 2008 and a technical description of the methods used in each case to ascertain the compiled data. (Id.)

It is estimated that from 1900 to 2008 the total net volumetric groundwater depletion in the New Mexico Ogalalla basin totaled 14.5 cubic km (3.7 cubic km from 2000-2008 alone), 1.9 cubic km in New Mexico’s Estancia Basin, 5.7 cubic km in the New Mexico/Texas Hueco Bolson aquifer (1.1 cubic km from 2000-2008 alone), 0.4 cubic km in New Mexico’s Mesilla Basin, 2.7 cubic km in New Mexico’s Middle Rio Grande Basin, 4.2 cubic km in New Mexico’s Mimbres Basin (all depletion coming from 2000-2008), and 1.5 cubic km in New Mexico’s Tularosa Basin. (Id. at Table 1) The Ogalalla, being one of the most extensively monitored aquifers in the US, did not
require as much modeling and estimation to arrive at a total as was needed for other New Mexico aquifers. \textit{(Id. at 22)} Irrigation since the 1940’s has dropped water levels an estimated 50 m in some places, compounded by pumpage in New Mexico and Texas starting in the early 1950’s (though Texas being about 10x the user as New Mexico). \textit{(Id.)}
The depletion during the last 8 years of record (2001-2008) makes up 32\% of the cumulative depletion for the 20th century. \textit{(Id.)}

The Estancia Basin, found in central New Mexico, covers an area of 6,200 square kilometers and has been heavily withdrawn for agricultural demands since the 1940’s. \textit{(Id. at 30)} Using the calibrated flow and water budget model, as applied to the Estancia Basin, approximately 63\% of total groundwater depletion in the Estancia (1.9 cubic km) is attributed to reductions of groundwater in storage primarily attributed to consumptive uses. \textit{(Id.)}

The Hueco Bolson, found in Southeastern New Mexico, has been used to supply agricultural demands since 1892. \textit{(Id. at 32)} As a result of "river derived" irrigation, recharge from seepage in subsequent years actually lead to some unusually high groundwater levels up until the 1960’s. \textit{(Id.)} As Southeastern New Mexico and West Texas developed, large-capacity and municipal wells needed to supply the needs of growing populations resulted in extensive pumping and an overall decline in basin water level by 46 meters under El Paso. \textit{(Id.)} Using a similar flow and water budget model as described above (called a MODFLOW), and extrapolating calculated values for 2003-2008, geologists described the cumulative reduction as 5.7 cubic km. \textit{(Id.)}

The Mesilla Basin, the Southernmost of the Rio Grande aquifer basins, is located in Dona Ana County. \textit{(Id. at 34)} The basin is relied on primarily for agriculture, and the MODFLOW also incorporated steady-state predevelopment conditions, long term water level records from USGS monitoring wells, and a curious period of no depletion from 1986-1998 (depletion rates returning to normal in 2000) to arrive at 0.4 cubic km of depletion in groundwater in storage. \textit{(Id.)}

The Middle Rio Grand covers 7900 square kilometers of central New Mexico and is substantially depleted from its pre-development levels. \textit{(Id. at 35)} A groundwater study in 1995 evidenced two large cones of depression in the Albuquerque and Rio Rancho areas, likely resulting in the 30 m decrease in water level from pre-development until another
study done in 2000. (Id.) It is estimated that 55% of the groundwater withdrawals have been for public use, and the most recent MODFLOW for the basin takes into account 52 stress periods while also incorporating a decrease in withdrawal rates beginning in 2000 (affecting depletion rates accordingly). (Id.) For New Mexico aquifers, this is the only one exhibiting a decrease in depletion volume in recent times. (Id.)

The Mimbres Basin in southwestern New Mexico has been affected by agricultural withdrawal since 1900. (Id. at 36). Wells in the Deming area indicate a decline of 12 m from 1930 to 1980, while wells in the Columbus area indicate a decline of 40 m in a similar time frame. (Id.) Despite a small decrease in depletion from 1981-1985, depletion volume has increased at a consistent rate resulting in a cumulative depletion estimate of 4.2 cubic km. (Id.)

The Tularosa is located across 17000 sq. km. of South-Central New Mexico. (Id. at 41) The MODFLOW took into account uncertainty in the volume of groundwater depleted by agricultural and municipal withdrawals, returning a high and low estimate. (Id.) Water level changes between 1948 and 1995 were as large as 30m, but even under the low estimate 15 m decrease was still estimated. (Id.) The resulting estimate of depletion from 1900 to 2008 totals 1.5 cubic km. (Id.)